Undergraduate Engineering Stats (as of Spring 2021)

<table>
<thead>
<tr>
<th></th>
<th>BE/BME</th>
<th>EE</th>
<th>ESE</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td># Concentrators</td>
<td>90</td>
<td>35</td>
<td>37</td>
<td>78</td>
</tr>
<tr>
<td>% SB (vs. AB)</td>
<td>47%</td>
<td>86%</td>
<td>49%</td>
<td>87%</td>
</tr>
<tr>
<td>Median Class Size</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Where have our recent graduates gone?

A few examples of where recent alumni are currently:

Raytheon
Medtronic
Boeing
Jacobs
Amazon
Wayfair
Intuitive Surgical
JP Morgan
McKinsey & Company

Learn more on the web:
www.seas.harvard.edu/engineering

Talk to our engineering advisors:

Electrical & Mechanical Engineering:
Chris Lombardo
lombardo@seas.harvard.edu

Bioengineering / Biomedical Engineering:
Linsey Moyer
lmoyer@seas.harvard.edu

Environmental Science & Engineering:
Bryan Yoon
byoon@seas.harvard.edu

Bioengineering
At the intersection of life and physical sciences, biomedical engineers apply principles of engineering to understand and model living systems and design novel therapies to improve human health.

Degrees offered: Engineering Sciences SB (Bioengineering track); Biomedical Engineering AB

Electrical Engineering
Covers a range of research areas from devices to systems, offering ample research opportunities, both theoretical and experimental, at the forefront of the field and its interdisciplinary applications.

Degrees offered: Electrical Engineering SB; Engineering Sciences AB (Electrical and Computer Engineering Track)

Environmental Science and Engineering
To understand, predict, and respond to natural and human-induced environmental change, environmental scientists and engineers provide technical solutions and advance innovations in environmental measurements, modeling, and control.

Degrees offered: Engineering Sciences SB (Environmental Science and Engineering track); Environmental Science and Engineering AB

Mechanical Engineering
Mechanical engineering uses the principles of physics and materials science for the analysis and design of mechanical and thermal systems.

Degrees offered: Mechanical Engineering SB; Engineering Sciences AB (Mechanical and Materials Science and Engineering Track)
**What problem do you want to solve?**

- Design and Validation of an Easily Machined CubeSat Structure (ME SB)
- JAZZMASTER: An Automated Accompaniment System for Jazz Music (EE SB)
- Evaluated cochlear implant mediated music perception with channel electrodogram mapping (BME AB, Joint with Music)
- Built a machine-learning based model to predict heavy metal contamination of groundwater at a national scale (ESE SB)
- Designed monocusp leaflets for right ventricular outflow tract reconstruction in infants (BE SB)

**Frequently asked questions**

- **Where do I start?**
  - **•** How can I get involved in research?
    - **•** Join a SEAS club (HCES, EWB, HURC, etc…)
    - **•** Take one of our introductory courses (see below)
    - **•** Talk to a concentration advisor (ADUS) in any of our fields to chat about your options
    - **•** Start taking math (according to placement) and science in your first year
    - **•** During summer: Students regularly join SEAS labs with funding through PRISE, HCRP, HUCE
    - **•** Term-time: SEAS labs welcome undergraduates to work on research projects during the term
    - **•** Students regularly join SEAS labs with funding through PRISE, HCRP, HUCE
    - **•** Many students participate in research at other universities through NSF REU programs

- **What’s the difference between Bachelor of Arts (A.B.) and Bachelor of Science (S.B.)?**
  - **•** AB: 14-16 courses, more flexible requirements, can do research thesis, can do joint concentration
  - **•** SB: 20 courses, engineering design courses, including individual capstone design project in ES100 (this is a required thesis), ABET-accredited (for professional licensure)

- **How can I get involved in research?**
  - **•** Term-time: SEAS labs welcome undergraduates to work on research projects during the term
  - **•** Can do research for credit by taking ES 91r
  - **•** Can find a SEAS lab by attending the SEAS Research Labs Open House in Nov. and/or Feb.
  - **•** During summer: Students regularly join SEAS labs with funding through PRISE, HCRP, HUCE
  - **•** Most Bio/BME students take ES 53 in sophomore fall, although some take the course in fall of first year.
  - **•** While not strictly required for the SB program, many premed SB students take LS 1b (beyond concentration requirements), but it need not be taken in the first year.

- **What kinds of internships can I do?**
  - **•** Research internships are available through SEAS and national labs. See above.
  - **•** Industry internships are available and can be found by attending SEAS career fairs or talking to the SEAS Experiential Learning Director, Keith Karasek (kkarasek@seas.harvard.edu)

- **Where do I start?**
  - **•** Start taking math (according to placement) and science in your first year
  - **•** Talk to a concentration advisor (ADUS) in any of our fields to chat about your options
  - **•** Take one of our introductory courses (see below)
  - **•** Join a SEAS club (HCES, EWB, HURC, etc…)

---

**Gateway Courses**

- **Electrical**
  - ES 50 (Spr)
- **Mechanical**
  - ES 51 (Fall, Spr)
- **Environmental**
  - ES 6 (Spr)
- **Bio/biomedical**
  - ES 53 (Fall)

---

**Bio/biomedical engineering**

- **First Year**
  - Foundational Math LS 1a/1SA
  - Foundational Math Physics (LS 1b)
- **Sophomore**
  - Found. Math (if needed) Physics
  - Found. Math (if needed) Engineering course

**Electrical engineering**

- **First Year**
  - Foundational Math CS 50
  - Foundational Math Physics
  - Consider: ES 50
- **Sophomore**
  - Found. Math (if needed) Physics
  - Found. Math (if needed) Engineering course

**Mechanical engineering**

- **First Year**
  - Foundational Math ES 51, AM 10, or CS 50
  - Foundational Math Physics
  - Consider: ES 50
- **Sophomore**
  - Found. Math (if needed) Physics
  - Found. Math (if needed) Physics

**Environmental science and engineering**

- **First Year**
  - Foundational Math LS 1a/1SA
  - Foundational Math ESE 6 Consider: PS 11
- **Sophomore**
  - Found. Math (if needed) Physics
  - PS 11 or Engineering course

---

**Common course sequences for the first two years**

**General Guidelines**

<table>
<thead>
<tr>
<th>General Guidelines</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Foundational Math Science or Gateway Engineering</td>
<td>Foundational Math Science or Gateway Engineering</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Foundational Math (if needed) Science Engineering</td>
<td>Foundational Math (if needed) Science Engineering</td>
</tr>
</tbody>
</table>

**Tips for all students:**

- **•** First year: At least two courses toward the concentration should be taken each term
- **•** Sophomore year: Generally, three courses toward the concentration should be taken each term
- **•** Foundational math, physics, science, and gateway courses generally count toward any of the engineering concentrations
  - **•** Students have the flexibility to switch between programs through sophomore year
- **•** Foundational Math: Students should start math fall of their first year according to their placement (i.e., start at Math Ma, 1a, 1b, or 21a) and continue each semester until completion of the 21a/b series, which is required of all students. SB students starting in Math 1b and beyond will need to take additional advanced math courses beyond foundational math.
- **•** Physics: Students should complete the physics series by spring of sophomore year. Typical sequences are:
  - Spring first year (PS 11a or Physics 15a) then sophomore year (Physics 15b or AP 50a) the spring sophomore year (Physics 15b or AP 50b)
- **•** Life Science/Chemistry/Other Science: Students should take the appropriate course relevant to their discipline (see chart below).

**Bio/biomedical engineering**

<table>
<thead>
<tr>
<th>Bio/biomedical engineering</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>ES 53</td>
<td>Found. Math (if needed) Physics</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Found. Math (if needed) Physics or CS 155 or ES 152</td>
<td>Found. Math (if needed) CS 141 or ES 156</td>
</tr>
</tbody>
</table>

**Electrical engineering**

<table>
<thead>
<tr>
<th>Electrical engineering</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Foundational Math CS 50</td>
<td>Foundational Math Physics Consider: ES 50</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Found. Math (if needed) Physics</td>
<td>Found. Math (if needed) Engineering course</td>
</tr>
</tbody>
</table>

**Mechanical engineering**

<table>
<thead>
<tr>
<th>Mechanical engineering</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Foundational Math ES 51, AM 10, or CS 50</td>
<td>Foundational Math Physics Consider: ES 50</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Found. Math (if needed) Physics</td>
<td>Found. Math (if needed) Physics</td>
</tr>
</tbody>
</table>

**Environmental science and engineering**

<table>
<thead>
<tr>
<th>Environmental science and engineering</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Foundational Math LS 1a/1SA</td>
<td>Foundational Math ESE 6 Consider: PS 11</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Found. Math (if needed) Physics</td>
<td>Found. Math (if needed) Engineering course</td>
</tr>
</tbody>
</table>

**Tips for Bio/BME students:**

- **•** Most Bio/BME students take ES 53 in sophomore fall, though some take the course in fall of first year.
- **•** Physics is a co-req for ES 53. It is highly recommended to start physics in the first year.
- **•** While not strictly required for the SB program, many premed SB students take LS 1b (beyond concentration requirements), but it need not be taken in the first year.

**Tips for EE students:**

- **•** First-year students who place out of Math 1b can take ES 155 in their first fall semester
- **•** First-year students who take CS50 in fall or have programming experience can take CS141 in spring
- **•** Strongly recommended to start physics in first year to be able to take ES152 (co-req Physics B) in sophomore year.

**Tips for MechE students:**

- **•** MechE students should complete ES 51 by sophomore fall
- **•** Almost all MechE students take ES 120 in sophomore spring